Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(j(x, y), y) → G(f(x, k(y)))
F(j(x, y), y) → K(y)
H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))
F(x, h1(y, z)) → H2(0, x, h1(y, z))
G(h2(x, y, h1(z, u))) → H2(s(x), y, h1(z, u))
F(j(x, y), y) → F(x, k(y))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

F(j(x, y), y) → G(f(x, k(y)))
F(j(x, y), y) → K(y)
H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))
F(x, h1(y, z)) → H2(0, x, h1(y, z))
G(h2(x, y, h1(z, u))) → H2(s(x), y, h1(z, u))
F(j(x, y), y) → F(x, k(y))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(j(x, y), y) → G(f(x, k(y)))
F(j(x, y), y) → K(y)
H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))
F(x, h1(y, z)) → H2(0, x, h1(y, z))
G(h2(x, y, h1(z, u))) → H2(s(x), y, h1(z, u))
F(j(x, y), y) → F(x, k(y))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


H2(x, j(y, h1(z, u)), h1(z, u)) → H2(s(x), y, h1(s(z), u))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
H2(x1, x2, x3)  =  x2
j(x1, x2)  =  j(x1, x2)
h1(x1, x2)  =  h1(x1, x2)
s(x1)  =  s

Recursive Path Order [2].
Precedence:
j2 > h12
s > h12

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F(j(x, y), y) → F(x, k(y))

The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F(j(x, y), y) → F(x, k(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  x1
j(x1, x2)  =  j(x1)
k(x1)  =  x1
h1(x1, x2)  =  h1(x1, x2)
s(x1)  =  s(x1)
h(x1)  =  x1
0  =  0

Recursive Path Order [2].
Precedence:
j1 > h12
s1 > h12
0 > h12

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.